

Data Science Clinic

with University of Rwanda

Rachelle Cho, Jenny Li, Sana Fessuh, Grace Rowan

RESEARCH QUESTION

Predict landslide risks of the Gitwe Kadhua Corridor by...

- Utilizing available geo topical factors
- Implementing various models
- Determining best performing model

WE CARE BECAUSE...

- ...climate fluctuations will lead to **increases** in landslides
- …landslides lead to significant fatalities and irreversible damage…
 - Substantial loss of life
 - Billions of dollars in property damage
- …limited research thus far

RELEVANT BACKGROUND — PRIOR RESEARCH

"Landslide susceptibility and influencing factors analysis in Rwanda" by Mind'je, R., L., Nsengiyumva, J.B. et al. (2020)

"Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda" by Nsengiyumva, J. B., Luo, G., Nahayo, L. et al. (2018)

CLAIMS

- West, North, and South provinces show high susceptibility to landslides
- Key causal factors:
 - Steep slopes
 - High elevation
 - Heavy rainfall

RELEVANT BACKGROUND — LOCATION

"Landslide susceptibility and influencing factors analysis in Rwanda" by Mind'je, R., L., Nsengiyumva, J.B. et al. (2020)

CLAIMS

- 10,169 sq mile landlocked country in Central Africa, located in the Great Lake region
 - Region highly susceptible to landslides
- The Gitwe-Kadhua Corridor is an region of interest due to high risk levels

OUR DATA — DEM

- 10m raster resolution
 - → Pixel-based elevation data

- Peaks in the histogram
 - → Frequent & dominant elevation ranges
- Flat sections in the histogram
 - → Less terrain variation (e.g., plateaus or flatlands)

OUR DATA — GEOFILE EXPLORATION

- 6 GeoPackage files describing varying properties in Rwanda
- Range widely in coverage and size

DATA CLEANING & PROCESSING

Challenge

- Direct merging is not possible
 - Each GeoPackage contains a unique set of polygons

Resolution

- Create a hexagonal grid
- Assigned attributes based on proximity to hexagon centers

Input

6 GeoPackages

Output

7 predictors: includes soil depth and type of land coverage

1 target variable: landslide risk

DATA CLEANING & PROCESSING — VISUAL

DELIVERABLES

- White Paper
- Four Different Models:
 - Ordered Linear Model
 - Random Forest Model
 - Neural Network Model EDLT
 - Large Language Model DistilBERT

MODEL OVERVIEW

- Model Characteristics:
 - Data split: 60% training, 20% testing, 20% validation
 - Features: type of land coverage, soil class, soil depth, riverside, roadside, area of land coverage, land coverage density

"Moderate"	"High"	"Very High"	"Extremely High"
------------	--------	-------------	------------------

Ordered Linear Model

Ordered Categories:

 More nuanced interpretation of relationship between features and risk

Handling Class Imbalance:

SMOTE oversampling technique

method=newton	
Validation Accuracy	43.3%
Test Accuracy	41.4%
Test Overprediction Rate	6.3%
Test Underprediction Rate	52.2%

Random Forest Model

- Feature importance: removed predictors with low impact
- Handling class imbalance:
 - SMOTE
 - Balanced Random Forest
 - Class_weights

Max_depth=8 Min_samples_leaf=3 Min_samples_split=10 N_estimator =50	
Validation Accuracy	52.8%
Test Accuracy	51.6%
Test Overprediction Rate	15.5%
Test Underprediction Rate	33.2%

Neural Network Model - Convolutional Neural Network for Categorical Data (EDLT)

- Data Processing and Learning Process
 - Converts categorical data into numerical
 - Reorders features to maximize correlation
 - Detects relationships between features

Validation Accuracy	48.1%
Test Accuracy	51.0%
Test Overprediction Rate	16.5%
Test Underprediction Rate	32.5%

Large Language Model

• **Model:** DistilBert

Data Processing

Process into strings, eg. "class (6.0), area_class (less than 0.25ha), ..."

Ask fine-tuned LLM to predict risk: "high risk"

Learning rate: 5e-5	
Validation Accuracy	50.3%
Test Accuracy	50.7%
Test Overprediction Rate	17.2%
Test Underprediction Rate	32.2%

Weight Decay: 2e-2

Tabulated Data

String Query

Risk Label

CONCLUSIONS

- Random Forest had the highest accuracy among models
- Model Accuracy has room for improvement
 - Feature gaps impact performance more than model choice
- Underprediction > Overprediction
- Apply corridor findings across Rwanda

Thank You!

SOURCES

Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., & Cai, P. (2018). Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda. International Journal of Environmental Research and Public Health, 15(2), 243. https://doi.org/10.3390/ijerph15020243